29 Numerics library [numerics]

29.9 Basic linear algebra algorithms [linalg]

29.9.14 BLAS 2 algorithms [linalg.algs.blas2]

29.9.14.4 Triangular matrix-vector product [linalg.algs.blas2.trmv]

[Note 1: 
These functions correspond to the BLAS functions xTRMV and xTPMV[bib].
— end note]
The following elements apply to all functions in [linalg.algs.blas2.trmv].
Mandates:
  • If InMat has layout_blas_packed layout, then the layout's Triangle template argument has the same type as the function's Triangle template argument;
  • compatible-static-extents<decltype(A), decltype(A)>(0, 1) is true;
  • compatible-static-extents<decltype(A), decltype(y)>(0, 0) is true;
  • compatible-static-extents<decltype(A), decltype(x)>(0, 0) is true for those overloads that take an x parameter; and
  • compatible-static-extents<decltype(A), decltype(z)>(0, 0) is true for those overloads that take a z parameter.
Preconditions:
  • A.extent(0) equals A.extent(1),
  • A.extent(0) equals y.extent(0),
  • A.extent(0) equals x.extent(0) for those overloads that take an x parameter, and
  • A.extent(0) equals z.extent(0) for those overloads that take a z parameter.
template<in-matrix InMat, class Triangle, class DiagonalStorage, in-vector InVec, out-vector OutVec> void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InVec x, OutVec y); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, in-vector InVec, out-vector OutVec> void triangular_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec x, OutVec y);
These functions perform an overwriting triangular matrix-vector product, taking into account the Triangle and DiagonalStorage parameters that apply to the triangular matrix A ([linalg.general]).
Effects: Computes .
Complexity: .
template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-vector InOutVec> void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InOutVec y); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, inout-vector InOutVec> void triangular_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutVec y);
These functions perform an in-place triangular matrix-vector product, taking into account the Triangle and DiagonalStorage parameters that apply to the triangular matrix A ([linalg.general]).
[Note 2: 
Performing this operation in place hinders parallelization.
However, other ExecutionPolicy specific optimizations, such as vectorization, are still possible.
— end note]
Effects: Computes a vector such that , and assigns each element of to the corresponding element of y.
Complexity: .
template<in-matrix InMat, class Triangle, class DiagonalStorage, in-vector InVec1, in-vector InVec2, out-vector OutVec> void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, in-vector InVec1, in-vector InVec2, out-vector OutVec> void triangular_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec1 x, InVec2 y, OutVec z);
These functions perform an updating triangular matrix-vector product, taking into account the Triangle and DiagonalStorage parameters that apply to the triangular matrix A ([linalg.general]).
Effects: Computes .
Complexity: .
Remarks: z may alias y.