29.9 Basic linear algebra algorithms [linalg]
template<class ElementType, class Extents, class Layout, class Accessor>
constexpr auto conjugated(mdspan<ElementType, Extents, Layout, Accessor> a);
Let
A be
remove_cvref_t<decltype(a.accessor().nested_accessor())>
if
Accessor is a specialization of
conjugated_accessor, and
otherwise
conjugated_accessor<Accessor>.Returns:
- If Accessor is a specialization of conjugated_accessor,
mdspan<typename A::element_type, Extents, Layout, A>(a.data_handle(), a.mapping(),
a.accessor().nested_accessor())
- otherwise,
mdspan<typename A::element_type, Extents, Layout, A>(a.data_handle(), a.mapping(),
conjugated_accessor(a.accessor()))
[
Example 1:
void test_conjugated_complex(mdspan<complex<double>, extents<int, 10>> a) {
auto a_conj = conjugated(a);
for (int i = 0; i < a.extent(0); ++i) {
assert(a_conj[i] == conj(a[i]);
}
auto a_conj_conj = conjugated(a_conj);
for (int i = 0; i < a.extent(0); ++i) {
assert(a_conj_conj[i] == a[i]);
}
}
void test_conjugated_real(mdspan<double, extents<int, 10>> a) {
auto a_conj = conjugated(a);
for (int i = 0; i < a.extent(0); ++i) {
assert(a_conj[i] == a[i]);
}
auto a_conj_conj = conjugated(a_conj);
for (int i = 0; i < a.extent(0); ++i) {
assert(a_conj_conj[i] == a[i]);
}
}
—
end example]