23 Containers library [containers]

23.5 Unordered associative containers [unord]

23.5.4 Class template unordered_multimap [unord.multimap]

23.5.4.1 Overview [unord.multimap.overview]

An unordered_multimap is an unordered associative container that supports equivalent keys (an instance of unordered_multimap may contain multiple copies of each key value) and that associates values of another type mapped_type with the keys.
The unordered_multimap class supports forward iterators.
An unordered_multimap meets all of the requirements of a container ([container.reqmts]), of an allocator-aware container ([container.alloc.reqmts]), and of an unordered associative container ([unord.req]).
It provides the operations described in the preceding requirements table for equivalent keys; that is, an unordered_multimap supports the a_eq operations in that table, not the a_uniq operations.
For an unordered_multimap<Key, T> the key_type is Key, the mapped_type is T, and the value_type is pair<const Key, T>.
Subclause [unord.multimap] only describes operations on unordered_multimap that are not described in one of the requirement tables, or for which there is additional semantic information.
namespace std { template<class Key, class T, class Hash = hash<Key>, class Pred = equal_to<Key>, class Allocator = allocator<pair<const Key, T>>> class unordered_multimap { public: // types using key_type = Key; using mapped_type = T; using value_type = pair<const Key, T>; using hasher = Hash; using key_equal = Pred; using allocator_type = Allocator; using pointer = typename allocator_traits<Allocator>::pointer; using const_pointer = typename allocator_traits<Allocator>::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = implementation-defined; // see [container.requirements] using difference_type = implementation-defined; // see [container.requirements] using iterator = implementation-defined; // see [container.requirements] using const_iterator = implementation-defined; // see [container.requirements] using local_iterator = implementation-defined; // see [container.requirements] using const_local_iterator = implementation-defined; // see [container.requirements] using node_type = unspecified; // [unord.multimap.cnstr], construct/copy/destroy unordered_multimap(); explicit unordered_multimap(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<class InputIterator> unordered_multimap(InputIterator f, InputIterator l, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<container-compatible-range<value_type> R> unordered_multimap(from_range_t, R&& rg, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); unordered_multimap(const unordered_multimap&); unordered_multimap(unordered_multimap&&); explicit unordered_multimap(const Allocator&); unordered_multimap(const unordered_multimap&, const type_identity_t<Allocator>&); unordered_multimap(unordered_multimap&&, const type_identity_t<Allocator>&); unordered_multimap(initializer_list<value_type> il, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); unordered_multimap(size_type n, const allocator_type& a) : unordered_multimap(n, hasher(), key_equal(), a) { } unordered_multimap(size_type n, const hasher& hf, const allocator_type& a) : unordered_multimap(n, hf, key_equal(), a) { } template<class InputIterator> unordered_multimap(InputIterator f, InputIterator l, size_type n, const allocator_type& a) : unordered_multimap(f, l, n, hasher(), key_equal(), a) { } template<class InputIterator> unordered_multimap(InputIterator f, InputIterator l, size_type n, const hasher& hf, const allocator_type& a) : unordered_multimap(f, l, n, hf, key_equal(), a) { } template<container-compatible-range<value_type> R> unordered_multimap(from_range_t, R&& rg, size_type n, const allocator_type& a) : unordered_multimap(from_range, std::forward<R>(rg), n, hasher(), key_equal(), a) { } template<container-compatible-range<value_type> R> unordered_multimap(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a) : unordered_multimap(from_range, std::forward<R>(rg), n, hf, key_equal(), a) { } unordered_multimap(initializer_list<value_type> il, size_type n, const allocator_type& a) : unordered_multimap(il, n, hasher(), key_equal(), a) { } unordered_multimap(initializer_list<value_type> il, size_type n, const hasher& hf, const allocator_type& a) : unordered_multimap(il, n, hf, key_equal(), a) { } ~unordered_multimap(); unordered_multimap& operator=(const unordered_multimap&); unordered_multimap& operator=(unordered_multimap&&) noexcept(allocator_traits<Allocator>::is_always_equal::value && is_nothrow_move_assignable_v<Hash> && is_nothrow_move_assignable_v<Pred>); unordered_multimap& operator=(initializer_list<value_type>); allocator_type get_allocator() const noexcept; // iterators iterator begin() noexcept; const_iterator begin() const noexcept; iterator end() noexcept; const_iterator end() const noexcept; const_iterator cbegin() const noexcept; const_iterator cend() const noexcept; // capacity bool empty() const noexcept; size_type size() const noexcept; size_type max_size() const noexcept; // [unord.multimap.modifiers], modifiers template<class... Args> iterator emplace(Args&&... args); template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args); iterator insert(const value_type& obj); iterator insert(value_type&& obj); template<class P> iterator insert(P&& obj); iterator insert(const_iterator hint, const value_type& obj); iterator insert(const_iterator hint, value_type&& obj); template<class P> iterator insert(const_iterator hint, P&& obj); template<class InputIterator> void insert(InputIterator first, InputIterator last); template<container-compatible-range<value_type> R> void insert_range(R&& rg); void insert(initializer_list<value_type>); node_type extract(const_iterator position); node_type extract(const key_type& x); template<class K> node_type extract(K&& x); iterator insert(node_type&& nh); iterator insert(const_iterator hint, node_type&& nh); iterator erase(iterator position); iterator erase(const_iterator position); size_type erase(const key_type& k); template<class K> size_type erase(K&& x); iterator erase(const_iterator first, const_iterator last); void swap(unordered_multimap&) noexcept(allocator_traits<Allocator>::is_always_equal::value && is_nothrow_swappable_v<Hash> && is_nothrow_swappable_v<Pred>); void clear() noexcept; template<class H2, class P2> void merge(unordered_multimap<Key, T, H2, P2, Allocator>& source); template<class H2, class P2> void merge(unordered_multimap<Key, T, H2, P2, Allocator>&& source); template<class H2, class P2> void merge(unordered_map<Key, T, H2, P2, Allocator>& source); template<class H2, class P2> void merge(unordered_map<Key, T, H2, P2, Allocator>&& source); // observers hasher hash_function() const; key_equal key_eq() const; // map operations iterator find(const key_type& k); const_iterator find(const key_type& k) const; template<class K> iterator find(const K& k); template<class K> const_iterator find(const K& k) const; size_type count(const key_type& k) const; template<class K> size_type count(const K& k) const; bool contains(const key_type& k) const; template<class K> bool contains(const K& k) const; pair<iterator, iterator> equal_range(const key_type& k); pair<const_iterator, const_iterator> equal_range(const key_type& k) const; template<class K> pair<iterator, iterator> equal_range(const K& k); template<class K> pair<const_iterator, const_iterator> equal_range(const K& k) const; // bucket interface size_type bucket_count() const noexcept; size_type max_bucket_count() const noexcept; size_type bucket_size(size_type n) const; size_type bucket(const key_type& k) const; template<class K> size_type bucket(const K& k) const; local_iterator begin(size_type n); const_local_iterator begin(size_type n) const; local_iterator end(size_type n); const_local_iterator end(size_type n) const; const_local_iterator cbegin(size_type n) const; const_local_iterator cend(size_type n) const; // hash policy float load_factor() const noexcept; float max_load_factor() const noexcept; void max_load_factor(float z); void rehash(size_type n); void reserve(size_type n); }; template<class InputIterator, class Hash = hash<iter-key-type<InputIterator>>, class Pred = equal_to<iter-key-type<InputIterator>>, class Allocator = allocator<iter-to-alloc-type<InputIterator>>> unordered_multimap(InputIterator, InputIterator, typename see below::size_type = see below, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>, Hash, Pred, Allocator>; template<ranges::input_range R, class Hash = hash<range-key-type<R>>, class Pred = equal_to<range-key-type<R>>, class Allocator = allocator<range-to-alloc-type<R>>> unordered_multimap(from_range_t, R&&, typename see below::size_type = see below, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_multimap<range-key-type<R>, range-mapped-type<R>, Hash, Pred, Allocator>; template<class Key, class T, class Hash = hash<Key>, class Pred = equal_to<Key>, class Allocator = allocator<pair<const Key, T>>> unordered_multimap(initializer_list<pair<Key, T>>, typename see below::size_type = see below, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_multimap<Key, T, Hash, Pred, Allocator>; template<class InputIterator, class Allocator> unordered_multimap(InputIterator, InputIterator, typename see below::size_type, Allocator) -> unordered_multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>, hash<iter-key-type<InputIterator>>, equal_to<iter-key-type<InputIterator>>, Allocator>; template<class InputIterator, class Allocator> unordered_multimap(InputIterator, InputIterator, Allocator) -> unordered_multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>, hash<iter-key-type<InputIterator>>, equal_to<iter-key-type<InputIterator>>, Allocator>; template<class InputIterator, class Hash, class Allocator> unordered_multimap(InputIterator, InputIterator, typename see below::size_type, Hash, Allocator) -> unordered_multimap<iter-key-type<InputIterator>, iter-mapped-type<InputIterator>, Hash, equal_to<iter-key-type<InputIterator>>, Allocator>; template<ranges::input_range R, class Allocator> unordered_multimap(from_range_t, R&&, typename see below::size_type, Allocator) -> unordered_multimap<range-key-type<R>, range-mapped-type<R>, hash<range-key-type<R>>, equal_to<range-key-type<R>>, Allocator>; template<ranges::input_range R, class Allocator> unordered_multimap(from_range_t, R&&, Allocator) -> unordered_multimap<range-key-type<R>, range-mapped-type<R>, hash<range-key-type<R>>, equal_to<range-key-type<R>>, Allocator>; template<ranges::input_range R, class Hash, class Allocator> unordered_multimap(from_range_t, R&&, typename see below::size_type, Hash, Allocator) -> unordered_multimap<range-key-type<R>, range-mapped-type<R>, Hash, equal_to<range-key-type<R>>, Allocator>; template<class Key, class T, class Allocator> unordered_multimap(initializer_list<pair<Key, T>>, typename see below::size_type, Allocator) -> unordered_multimap<Key, T, hash<Key>, equal_to<Key>, Allocator>; template<class Key, class T, class Allocator> unordered_multimap(initializer_list<pair<Key, T>>, Allocator) -> unordered_multimap<Key, T, hash<Key>, equal_to<Key>, Allocator>; template<class Key, class T, class Hash, class Allocator> unordered_multimap(initializer_list<pair<Key, T>>, typename see below::size_type, Hash, Allocator) -> unordered_multimap<Key, T, Hash, equal_to<Key>, Allocator>; }
A size_type parameter type in an unordered_multimap deduction guide refers to the size_type member type of the type deduced by the deduction guide.

23.5.4.2 Constructors [unord.multimap.cnstr]

unordered_multimap() : unordered_multimap(size_type(see below)) { } explicit unordered_multimap(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());
Effects: Constructs an empty unordered_multimap using the specified hash function, key equality predicate, and allocator, and using at least n buckets.
For the default constructor, the number of buckets is implementation-defined.
max_load_factor() returns 1.0.
Complexity: Constant.
template<class InputIterator> unordered_multimap(InputIterator f, InputIterator l, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<container-compatible-range<value_type> R> unordered_multimap(from_range_t, R&& rg, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); unordered_multimap(initializer_list<value_type> il, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type());
Effects: Constructs an empty unordered_multimap using the specified hash function, key equality predicate, and allocator, and using at least n buckets.
If n is not provided, the number of buckets is implementation-defined.
Then inserts elements from the range [f, l), rg, or il, respectively.
max_load_factor() returns 1.0.
Complexity: Average case linear, worst case quadratic.

23.5.4.3 Modifiers [unord.multimap.modifiers]

template<class P> iterator insert(P&& obj);
Constraints: is_constructible_v<value_type, P&&> is true.
Effects: Equivalent to: return emplace(std​::​forward<P>(obj));
template<class P> iterator insert(const_iterator hint, P&& obj);
Constraints: is_constructible_v<value_type, P&&> is true.
Effects: Equivalent to: return emplace_hint(hint, std​::​forward<P>(obj));

23.5.4.4 Erasure [unord.multimap.erasure]

template<class K, class T, class H, class P, class A, class Predicate> typename unordered_multimap<K, T, H, P, A>::size_type erase_if(unordered_multimap<K, T, H, P, A>& c, Predicate pred);
Effects: Equivalent to: auto original_size = c.size(); for (auto i = c.begin(), last = c.end(); i != last; ) { if (pred(*i)) { i = c.erase(i); } else { ++i; } } return original_size - c.size();