27 Algorithms library [algorithms]

27.6 Non-modifying sequence operations [alg.nonmodifying]

27.6.1 All of [alg.all.of]

template<class InputIterator, class Predicate> constexpr bool all_of(InputIterator first, InputIterator last, Predicate pred); template<class ExecutionPolicy, class ForwardIterator, class Predicate> bool all_of(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, Predicate pred); template<input_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr bool ranges::all_of(I first, S last, Pred pred, Proj proj = {}); template<input_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr bool ranges::all_of(R&& r, Pred pred, Proj proj = {});
Let E be:
  • pred(*i) for the overloads in namespace std;
  • invoke(pred, invoke(proj, *i)) for the overloads in namespace ranges.
Returns: false if E is false for some iterator i in the range [first, last), and true otherwise.
Complexity: At most last - first applications of the predicate and any projection.

27.6.2 Any of [alg.any.of]

template<class InputIterator, class Predicate> constexpr bool any_of(InputIterator first, InputIterator last, Predicate pred); template<class ExecutionPolicy, class ForwardIterator, class Predicate> bool any_of(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, Predicate pred); template<input_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr bool ranges::any_of(I first, S last, Pred pred, Proj proj = {}); template<input_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr bool ranges::any_of(R&& r, Pred pred, Proj proj = {});
Let E be:
  • pred(*i) for the overloads in namespace std;
  • invoke(pred, invoke(proj, *i)) for the overloads in namespace ranges.
Returns: true if E is true for some iterator i in the range [first, last), and false otherwise.
Complexity: At most last - first applications of the predicate and any projection.

27.6.3 None of [alg.none.of]

template<class InputIterator, class Predicate> constexpr bool none_of(InputIterator first, InputIterator last, Predicate pred); template<class ExecutionPolicy, class ForwardIterator, class Predicate> bool none_of(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, Predicate pred); template<input_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr bool ranges::none_of(I first, S last, Pred pred, Proj proj = {}); template<input_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr bool ranges::none_of(R&& r, Pred pred, Proj proj = {});
Let E be:
  • pred(*i) for the overloads in namespace std;
  • invoke(pred, invoke(proj, *i)) for the overloads in namespace ranges.
Returns: false if E is true for some iterator i in the range [first, last), and true otherwise.
Complexity: At most last - first applications of the predicate and any projection.

27.6.4 Contains [alg.contains]

template<input_iterator I, sentinel_for<I> S, class Proj = identity, class T = projected_value_t<I, Proj>> requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*> constexpr bool ranges::contains(I first, S last, const T& value, Proj proj = {}); template<input_range R, class Proj = identity, class T = projected_value_t<iterator_t<R>, Proj>> requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*> constexpr bool ranges::contains(R&& r, const T& value, Proj proj = {});
Returns: ranges​::​find(std​::​move(first), last, value, proj) != last.
template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr bool ranges::contains_subrange(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<forward_range R1, forward_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr bool ranges::contains_subrange(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
Returns: first2 == last2 || !ranges​::​search(first1, last1, first2, last2, pred, proj1, proj2).empty().

27.6.5 For each [alg.foreach]

template<class InputIterator, class Function> constexpr Function for_each(InputIterator first, InputIterator last, Function f);
Preconditions: Function meets the Cpp17MoveConstructible requirements (Table 31).
[Note 1: 
Function need not meet the requirements of Cpp17CopyConstructible (Table 32).
— end note]
Effects: Applies f to the result of dereferencing every iterator in the range [first, last), starting from first and proceeding to last - 1.
[Note 2: 
If the type of first meets the requirements of a mutable iterator, f can apply non-constant functions through the dereferenced iterator.
— end note]
Returns: f.
Complexity: Applies f exactly last - first times.
Remarks: If f returns a result, the result is ignored.
template<class ExecutionPolicy, class ForwardIterator, class Function> void for_each(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, Function f);
Preconditions: Function meets the Cpp17CopyConstructible requirements.
Effects: Applies f to the result of dereferencing every iterator in the range [first, last).
[Note 3: 
If the type of first meets the requirements of a mutable iterator, f can apply non-constant functions through the dereferenced iterator.
— end note]
Complexity: Applies f exactly last - first times.
Remarks: If f returns a result, the result is ignored.
Implementations do not have the freedom granted under [algorithms.parallel.exec] to make arbitrary copies of elements from the input sequence.
[Note 4: 
Does not return a copy of its Function parameter, since parallelization often does not permit efficient state accumulation.
— end note]
template<input_iterator I, sentinel_for<I> S, class Proj = identity, indirectly_unary_invocable<projected<I, Proj>> Fun> constexpr ranges::for_each_result<I, Fun> ranges::for_each(I first, S last, Fun f, Proj proj = {}); template<input_range R, class Proj = identity, indirectly_unary_invocable<projected<iterator_t<R>, Proj>> Fun> constexpr ranges::for_each_result<borrowed_iterator_t<R>, Fun> ranges::for_each(R&& r, Fun f, Proj proj = {});
Effects: Calls invoke(f, invoke(proj, *i)) for every iterator i in the range [first, last), starting from first and proceeding to last - 1.
[Note 5: 
If the result of invoke(proj, *i) is a mutable reference, f can apply non-constant functions.
— end note]
Returns: {last, std​::​move(f)}.
Complexity: Applies f and proj exactly last - first times.
Remarks: If f returns a result, the result is ignored.
[Note 6: 
The overloads in namespace ranges require Fun to model copy_constructible.
— end note]
template<class InputIterator, class Size, class Function> constexpr InputIterator for_each_n(InputIterator first, Size n, Function f);
Mandates: The type Size is convertible to an integral type ([conv.integral], [class.conv]).
Preconditions: n >= 0 is true.
Function meets the Cpp17MoveConstructible requirements.
[Note 7: 
Function need not meet the requirements of Cpp17CopyConstructible.
— end note]
Effects: Applies f to the result of dereferencing every iterator in the range [first, first + n) in order.
[Note 8: 
If the type of first meets the requirements of a mutable iterator, f can apply non-constant functions through the dereferenced iterator.
— end note]
Returns: first + n.
Remarks: If f returns a result, the result is ignored.
template<class ExecutionPolicy, class ForwardIterator, class Size, class Function> ForwardIterator for_each_n(ExecutionPolicy&& exec, ForwardIterator first, Size n, Function f);
Mandates: The type Size is convertible to an integral type ([conv.integral], [class.conv]).
Preconditions: n >= 0 is true.
Function meets the Cpp17CopyConstructible requirements.
Effects: Applies f to the result of dereferencing every iterator in the range [first, first + n).
[Note 9: 
If the type of first meets the requirements of a mutable iterator, f can apply non-constant functions through the dereferenced iterator.
— end note]
Returns: first + n.
Remarks: If f returns a result, the result is ignored.
Implementations do not have the freedom granted under [algorithms.parallel.exec] to make arbitrary copies of elements from the input sequence.
template<input_iterator I, class Proj = identity, indirectly_unary_invocable<projected<I, Proj>> Fun> constexpr ranges::for_each_n_result<I, Fun> ranges::for_each_n(I first, iter_difference_t<I> n, Fun f, Proj proj = {});
Preconditions: n >= 0 is true.
Effects: Calls invoke(f, invoke(proj, *i)) for every iterator i in the range [first, first + n) in order.
[Note 10: 
If the result of invoke(proj, *i) is a mutable reference, f can apply non-constant functions.
— end note]
Returns: {first + n, std​::​move(f)}.
Remarks: If f returns a result, the result is ignored.
[Note 11: 
The overload in namespace ranges requires Fun to model copy_constructible.
— end note]

27.6.6 Find [alg.find]

template<class InputIterator, class T = iterator_traits<InputIterator>::value_type> constexpr InputIterator find(InputIterator first, InputIterator last, const T& value); template<class ExecutionPolicy, class ForwardIterator, class T = iterator_traits<ForwardIterator>::value_type> ForwardIterator find(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, const T& value); template<class InputIterator, class Predicate> constexpr InputIterator find_if(InputIterator first, InputIterator last, Predicate pred); template<class ExecutionPolicy, class ForwardIterator, class Predicate> ForwardIterator find_if(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, Predicate pred); template<class InputIterator, class Predicate> constexpr InputIterator find_if_not(InputIterator first, InputIterator last, Predicate pred); template<class ExecutionPolicy, class ForwardIterator, class Predicate> ForwardIterator find_if_not(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, Predicate pred); template<input_iterator I, sentinel_for<I> S, class Proj = identity, class T = projected_value_t<I, Proj>> requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*> constexpr I ranges::find(I first, S last, const T& value, Proj proj = {}); template<input_range R, class Proj = identity, class T = projected_value_t<iterator_t<R>, Proj>> requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*> constexpr borrowed_iterator_t<R> ranges::find(R&& r, const T& value, Proj proj = {}); template<input_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr I ranges::find_if(I first, S last, Pred pred, Proj proj = {}); template<input_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr borrowed_iterator_t<R> ranges::find_if(R&& r, Pred pred, Proj proj = {}); template<input_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr I ranges::find_if_not(I first, S last, Pred pred, Proj proj = {}); template<input_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr borrowed_iterator_t<R> ranges::find_if_not(R&& r, Pred pred, Proj proj = {});
Let E be:
  • *i == value for find;
  • pred(*i) != false for find_if;
  • pred(*i) == false for find_if_not;
  • bool(invoke(proj, *i) == value) for ranges​::​find;
  • bool(invoke(pred, invoke(proj, *i))) for ranges​::​find_if;
  • bool(!invoke(pred, invoke(proj, *i))) for ranges​::​find_if_not.
Returns: The first iterator i in the range [first, last) for which E is true.
Returns last if no such iterator is found.
Complexity: At most last - first applications of the corresponding predicate and any projection.

27.6.7 Find last [alg.find.last]

template<forward_iterator I, sentinel_for<I> S, class Proj = identity, class T = projected_value_t<I, Proj>> requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*> constexpr subrange<I> ranges::find_last(I first, S last, const T& value, Proj proj = {}); template<forward_range R, class Proj = identity, class T = projected_value_t<iterator_t<R>, Proj>> requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*> constexpr borrowed_subrange_t<R> ranges::find_last(R&& r, const T& value, Proj proj = {}); template<forward_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr subrange<I> ranges::find_last_if(I first, S last, Pred pred, Proj proj = {}); template<forward_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr borrowed_subrange_t<R> ranges::find_last_if(R&& r, Pred pred, Proj proj = {}); template<forward_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr subrange<I> ranges::find_last_if_not(I first, S last, Pred pred, Proj proj = {}); template<forward_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr borrowed_subrange_t<R> ranges::find_last_if_not(R&& r, Pred pred, Proj proj = {});
Let E be:
  • bool(invoke(proj, *i) == value) for ranges​::​find_last;
  • bool(invoke(pred, invoke(proj, *i))) for ranges​::​find_last_if;
  • bool(!invoke(pred, invoke(proj, *i))) for ranges​::​find_last_if_not.
Returns: Let i be the last iterator in the range [first, last) for which E is true.
Returns {i, last}, or {last, last} if no such iterator is found.
Complexity: At most last - first applications of the corresponding predicate and projection.

27.6.8 Find end [alg.find.end]

template<class ForwardIterator1, class ForwardIterator2> constexpr ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2> ForwardIterator1 find_end(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> constexpr ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 find_end(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred); template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr subrange<I1> ranges::find_end(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<forward_range R1, forward_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr borrowed_subrange_t<R1> ranges::find_end(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
Let:
  • pred be equal_to{} for the overloads with no parameter pred;
  • E be:
    • pred(*(i + n), *(first2 + n)) for the overloads in namespace std;
    • invoke(pred, invoke(proj1, *(i + n)), invoke(proj2, *(first2 + n))) for the overloads in namespace ranges;
  • i be last1 if [first2, last2) is empty, or if (last2 - first2) > (last1 - first1) is true, or if there is no iterator in the range [first1, last1 - (last2 - first2)) such that for every non-negative integer n < (last2 - first2), E is true.
    Otherwise i is the last such iterator in [first1, last1 - (last2 - first2)).
Returns:
  • i for the overloads in namespace std.
  • {i, i + (i == last1 ? 0 : last2 - first2)} for the overloads in namespace ranges.
Complexity: At most (last2 - first2) * (last1 - first1 - (last2 - first2) + 1) applications of the corresponding predicate and any projections.

27.6.9 Find first [alg.find.first.of]

template<class InputIterator, class ForwardIterator> constexpr InputIterator find_first_of(InputIterator first1, InputIterator last1, ForwardIterator first2, ForwardIterator last2); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2> ForwardIterator1 find_first_of(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class InputIterator, class ForwardIterator, class BinaryPredicate> constexpr InputIterator find_first_of(InputIterator first1, InputIterator last1, ForwardIterator first2, ForwardIterator last2, BinaryPredicate pred); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 find_first_of(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred); template<input_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr I1 ranges::find_first_of(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, forward_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr borrowed_iterator_t<R1> ranges::find_first_of(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
Let E be:
  • *i == *j for the overloads with no parameter pred;
  • pred(*i, *j) != false for the overloads with a parameter pred and no parameter proj1;
  • bool(invoke(pred, invoke(proj1, *i), invoke(proj2, *j))) for the overloads with parameters pred and proj1.
Effects: Finds an element that matches one of a set of values.
Returns: The first iterator i in the range [first1, last1) such that for some iterator j in the range [first2, last2) E holds.
Returns last1 if [first2, last2) is empty or if no such iterator is found.
Complexity: At most (last1-first1) * (last2-first2) applications of the corresponding predicate and any projections.

27.6.10 Adjacent find [alg.adjacent.find]

template<class ForwardIterator> constexpr ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last); template<class ExecutionPolicy, class ForwardIterator> ForwardIterator adjacent_find(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last); template<class ForwardIterator, class BinaryPredicate> constexpr ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last, BinaryPredicate pred); template<class ExecutionPolicy, class ForwardIterator, class BinaryPredicate> ForwardIterator adjacent_find(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, BinaryPredicate pred); template<forward_iterator I, sentinel_for<I> S, class Proj = identity, indirect_binary_predicate<projected<I, Proj>, projected<I, Proj>> Pred = ranges::equal_to> constexpr I ranges::adjacent_find(I first, S last, Pred pred = {}, Proj proj = {}); template<forward_range R, class Proj = identity, indirect_binary_predicate<projected<iterator_t<R>, Proj>, projected<iterator_t<R>, Proj>> Pred = ranges::equal_to> constexpr borrowed_iterator_t<R> ranges::adjacent_find(R&& r, Pred pred = {}, Proj proj = {});
Let E be:
  • *i == *(i + 1) for the overloads with no parameter pred;
  • pred(*i, *(i + 1)) != false for the overloads with a parameter pred and no parameter proj;
  • bool(invoke(pred, invoke(proj, *i), invoke(proj, *(i + 1)))) for the overloads with both parameters pred and proj.
Returns: The first iterator i such that both i and i + 1 are in the range [first, last) for which E holds.
Returns last if no such iterator is found.
Complexity: For the overloads with no ExecutionPolicy, exactly min((i - first) + 1,  (last - first) - 1) applications of the corresponding predicate, where i is adjacent_find's return value.
For the overloads with an ExecutionPolicy, applications of the corresponding predicate, and no more than twice as many applications of any projection.

27.6.11 Count [alg.count]

template<class InputIterator, class T = iterator_traits<InputIterator>::value_type> constexpr typename iterator_traits<InputIterator>::difference_type count(InputIterator first, InputIterator last, const T& value); template<class ExecutionPolicy, class ForwardIterator, class T = iterator_traits<ForwardIterator>::value_type> typename iterator_traits<ForwardIterator>::difference_type count(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, const T& value); template<class InputIterator, class Predicate> constexpr typename iterator_traits<InputIterator>::difference_type count_if(InputIterator first, InputIterator last, Predicate pred); template<class ExecutionPolicy, class ForwardIterator, class Predicate> typename iterator_traits<ForwardIterator>::difference_type count_if(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, Predicate pred); template<input_iterator I, sentinel_for<I> S, class Proj = identity, class T = projected_value_t<I, Proj>> requires indirect_binary_predicate<ranges::equal_to, projected<I, Proj>, const T*> constexpr iter_difference_t<I> ranges::count(I first, S last, const T& value, Proj proj = {}); template<input_range R, class Proj = identity, class T = projected_value_t<iterator_t<R>, Proj>> requires indirect_binary_predicate<ranges::equal_to, projected<iterator_t<R>, Proj>, const T*> constexpr range_difference_t<R> ranges::count(R&& r, const T& value, Proj proj = {}); template<input_iterator I, sentinel_for<I> S, class Proj = identity, indirect_unary_predicate<projected<I, Proj>> Pred> constexpr iter_difference_t<I> ranges::count_if(I first, S last, Pred pred, Proj proj = {}); template<input_range R, class Proj = identity, indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred> constexpr range_difference_t<R> ranges::count_if(R&& r, Pred pred, Proj proj = {});
Let E be:
  • *i == value for the overloads with no parameter pred or proj;
  • pred(*i) != false for the overloads with a parameter pred but no parameter proj;
  • invoke(proj, *i) == value for the overloads with a parameter proj but no parameter pred;
  • bool(invoke(pred, invoke(proj, *i))) for the overloads with both parameters proj and pred.
Effects: Returns the number of iterators i in the range [first, last) for which E holds.
Complexity: Exactly last - first applications of the corresponding predicate and any projection.

27.6.12 Mismatch [alg.mismatch]

template<class InputIterator1, class InputIterator2> constexpr pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2> pair<ForwardIterator1, ForwardIterator2> mismatch(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2); template<class InputIterator1, class InputIterator2, class BinaryPredicate> constexpr pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, BinaryPredicate pred); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> pair<ForwardIterator1, ForwardIterator2> mismatch(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, BinaryPredicate pred); template<class InputIterator1, class InputIterator2> constexpr pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2> pair<ForwardIterator1, ForwardIterator2> mismatch(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class InputIterator1, class InputIterator2, class BinaryPredicate> constexpr pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, BinaryPredicate pred); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> pair<ForwardIterator1, ForwardIterator2> mismatch(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred); template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr ranges::mismatch_result<I1, I2> ranges::mismatch(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, input_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr ranges::mismatch_result<borrowed_iterator_t<R1>, borrowed_iterator_t<R2>> ranges::mismatch(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
Let last2 be first2 + (last1 - first1) for the overloads with no parameter last2 or r2.
Let E be:
  • !(*(first1 + n) == *(first2 + n)) for the overloads with no parameter pred;
  • pred(*(first1 + n), *(first2 + n)) == false for the overloads with a parameter pred and no parameter proj1;
  • !invoke(pred, invoke(proj1, *(first1 + n)), invoke(proj2, *(first2 + n))) for the overloads with both parameters pred and proj1.
Let N be min(last1 - first1,  last2 - first2).
Returns: { first1 + n, first2 + n }, where n is the smallest integer in [0, N) such that E holds, or N if no such integer exists.
Complexity: At most N applications of the corresponding predicate and any projections.

27.6.13 Equal [alg.equal]

template<class InputIterator1, class InputIterator2> constexpr bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2> bool equal(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2); template<class InputIterator1, class InputIterator2, class BinaryPredicate> constexpr bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, BinaryPredicate pred); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> bool equal(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, BinaryPredicate pred); template<class InputIterator1, class InputIterator2> constexpr bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2> bool equal(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class InputIterator1, class InputIterator2, class BinaryPredicate> constexpr bool equal(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2, BinaryPredicate pred); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> bool equal(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred); template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr bool ranges::equal(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, input_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr bool ranges::equal(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
Let:
  • last2 be first2 + (last1 - first1) for the overloads with no parameter last2 or r2;
  • pred be equal_to{} for the overloads with no parameter pred;
  • E be:
    • pred(*i, *(first2 + (i - first1))) for the overloads with no parameter proj1;
    • invoke(pred, invoke(proj1, *i), invoke(proj2, *(first2 + (i - first1)))) for the overloads with parameter proj1.
Returns: If last1 - first1 != last2 - first2, return false.
Otherwise return true if E holds for every iterator i in the range [first1, last1).
Otherwise, returns false.
Complexity: If then no applications of the corresponding predicate and each projection; otherwise,
  • For the overloads with no ExecutionPolicy, at most min(last1 - first1,  last2 - first2) applications of the corresponding predicate and any projections.
  • For the overloads with an ExecutionPolicy, applications of the corresponding predicate.

27.6.14 Is permutation [alg.is.permutation]

template<class ForwardIterator1, class ForwardIterator2> constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, BinaryPredicate pred); template<class ForwardIterator1, class ForwardIterator2> constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> constexpr bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred);
Let last2 be first2 + (last1 - first1) for the overloads with no parameter named last2, and let pred be equal_to{} for the overloads with no parameter pred.
Mandates: ForwardIterator1 and ForwardIterator2 have the same value type.
Preconditions: The comparison function is an equivalence relation.
Returns: If last1 - first1 != last2 - first2, return false.
Otherwise return true if there exists a permutation of the elements in the range [first2, last2), beginning with ForwardIterator2 begin, such that equal(first1, last1, begin, pred) returns true; otherwise, returns false.
Complexity: No applications of the corresponding predicate if ForwardIterator1 and ForwardIterator2 meet the requirements of random access iterators and last1 - first1 != last2 - first2.
Otherwise, exactly last1 - first1 applications of the corresponding predicate if equal(first1, last1, first2, last2, pred) would return true; otherwise, at worst , where N has the value last1 - first1.
template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2, class Proj1 = identity, class Proj2 = identity, indirect_equivalence_relation<projected<I1, Proj1>, projected<I2, Proj2>> Pred = ranges::equal_to> constexpr bool ranges::is_permutation(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<forward_range R1, forward_range R2, class Proj1 = identity, class Proj2 = identity, indirect_equivalence_relation<projected<iterator_t<R1>, Proj1>, projected<iterator_t<R2>, Proj2>> Pred = ranges::equal_to> constexpr bool ranges::is_permutation(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
Returns: If last1 - first1 != last2 - first2, return false.
Otherwise return true if there exists a permutation of the elements in the range [first2, last2), bounded by [pfirst, plast), such that ranges​::​equal(first1, last1, pfirst, plast, pred, proj1, proj2) returns true; otherwise, returns false.
Complexity: No applications of the corresponding predicate and projections if
Otherwise, exactly last1 - first1 applications of the corresponding predicate and projections if ranges​::​equal(​first1, last1, first2, last2, pred, proj1, proj2) would return true; otherwise, at worst , where N has the value last1 - first1.

27.6.15 Search [alg.search]

template<class ForwardIterator1, class ForwardIterator2> constexpr ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2> ForwardIterator1 search(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2); template<class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> constexpr ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred); template<class ExecutionPolicy, class ForwardIterator1, class ForwardIterator2, class BinaryPredicate> ForwardIterator1 search(ExecutionPolicy&& exec, ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred);
Returns: The first iterator i in the range [first1, last1 - (last2-first2)) such that for every non-negative integer n less than last2 - first2 the following corresponding conditions hold: *(i + n) == *(first2 + n), pred(*(i + n), *(first2 + n)) != false.
Returns first1 if [first2, last2) is empty, otherwise returns last1 if no such iterator is found.
Complexity: At most (last1 - first1) * (last2 - first2) applications of the corresponding predicate.
template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr subrange<I1> ranges::search(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<forward_range R1, forward_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr borrowed_subrange_t<R1> ranges::search(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
Returns:
  • {i, i + (last2 - first2)}, where i is the first iterator in the range [first1, last1 - (last2 - first2)) such that for every non-negative integer n less than last2 - first2 the condition bool(invoke(pred, invoke(proj1, *(i + n)), invoke(proj2, *(first2 + n)))) is true.
  • Returns {last1, last1} if no such iterator exists.
Complexity: At most (last1 - first1) * (last2 - first2) applications of the corresponding predicate and projections.
template<class ForwardIterator, class Size, class T = iterator_traits<ForwardIterator>::value_type> constexpr ForwardIterator search_n(ForwardIterator first, ForwardIterator last, Size count, const T& value); template<class ExecutionPolicy, class ForwardIterator, class Size, class T = iterator_traits<ForwardIterator>::value_type> ForwardIterator search_n(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, Size count, const T& value); template<class ForwardIterator, class Size, class T = iterator_traits<ForwardIterator>::value_type, class BinaryPredicate> constexpr ForwardIterator search_n(ForwardIterator first, ForwardIterator last, Size count, const T& value, BinaryPredicate pred); template<class ExecutionPolicy, class ForwardIterator, class Size, class T = iterator_traits<ForwardIterator>::value_type, class BinaryPredicate> ForwardIterator search_n(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, Size count, const T& value, BinaryPredicate pred);
Mandates: The type Size is convertible to an integral type ([conv.integral], [class.conv]).
Let E be pred(*(i + n), value) != false for the overloads with a parameter pred, and *(i + n) == value otherwise.
Returns: The first iterator i in the range [first, last-count) such that for every non-negative integer n less than count the condition E is true.
Returns last if no such iterator is found.
Complexity: At most last - first applications of the corresponding predicate.
template<forward_iterator I, sentinel_for<I> S, class Pred = ranges::equal_to, class Proj = identity, class T = projected_value_t<I, Proj>> requires indirectly_comparable<I, const T*, Pred, Proj> constexpr subrange<I> ranges::search_n(I first, S last, iter_difference_t<I> count, const T& value, Pred pred = {}, Proj proj = {}); template<forward_range R, class Pred = ranges::equal_to, class Proj = identity, class T = projected_value_t<iterator_t<R>, Proj>> requires indirectly_comparable<iterator_t<R>, const T*, Pred, Proj> constexpr borrowed_subrange_t<R> ranges::search_n(R&& r, range_difference_t<R> count, const T& value, Pred pred = {}, Proj proj = {});
Returns: {i, i + count} where i is the first iterator in the range [first, last - count) such that for every non-negative integer n less than count, the following condition holds: invoke(pred, invoke(proj, *(i + n)), value).
Returns {last, last} if no such iterator is found.
Complexity: At most last - first applications of the corresponding predicate and projection.
template<class ForwardIterator, class Searcher> constexpr ForwardIterator search(ForwardIterator first, ForwardIterator last, const Searcher& searcher);
Effects: Equivalent to: return searcher(first, last).first;
Remarks: Searcher need not meet the Cpp17CopyConstructible requirements.

27.6.16 Starts with [alg.starts.with]

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr bool ranges::starts_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}); template<input_range R1, input_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr bool ranges::starts_with(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
Returns: ranges::mismatch(std::move(first1), last1, std::move(first2), last2, pred, proj1, proj2).in2 == last2

27.6.17 Ends with [alg.ends.with]

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires (forward_iterator<I1> || sized_sentinel_for<S1, I1>) && (forward_iterator<I2> || sized_sentinel_for<S2, I2>) && indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr bool ranges::ends_with(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
Let N1 be last1 - first1 and N2 be last2 - first2.
Returns: false if N1 < N2, otherwise ranges::equal(std::move(first1) + (N1 - N2), last1, std::move(first2), last2, pred, proj1, proj2)
template<input_range R1, input_range R2, class Pred = ranges::equal_to, class Proj1 = identity, class Proj2 = identity> requires (forward_range<R1> || sized_range<R1>) && (forward_range<R2> || sized_range<R2>) && indirectly_comparable<iterator_t<R1>, iterator_t<R2>, Pred, Proj1, Proj2> constexpr bool ranges::ends_with(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {});
Let N1 be ranges​::​distance(r1) and N2 be ranges​::​distance(r2).
Returns: false if N1 < N2, otherwise ranges::equal(views::drop(ranges::ref_view(r1), N1 - static_cast<decltype(N1)>(N2)), r2, pred, proj1, proj2)

27.6.18 Fold [alg.fold]

template<input_iterator I, sentinel_for<I> S, class T = iter_value_t<I>, indirectly-binary-left-foldable<T, I> F> constexpr auto ranges::fold_left(I first, S last, T init, F f); template<input_range R, class T = range_value_t<R>, indirectly-binary-left-foldable<T, iterator_t<R>> F> constexpr auto ranges::fold_left(R&& r, T init, F f);
Returns: ranges::fold_left_with_iter(std::move(first), last, std::move(init), f).value
template<input_iterator I, sentinel_for<I> S, indirectly-binary-left-foldable<iter_value_t<I>, I> F> requires constructible_from<iter_value_t<I>, iter_reference_t<I>> constexpr auto ranges::fold_left_first(I first, S last, F f); template<input_range R, indirectly-binary-left-foldable<range_value_t<R>, iterator_t<R>> F> requires constructible_from<range_value_t<R>, range_reference_t<R>> constexpr auto ranges::fold_left_first(R&& r, F f);
Returns: ranges::fold_left_first_with_iter(std::move(first), last, f).value
template<bidirectional_iterator I, sentinel_for<I> S, class T = iter_value_t<I>, indirectly-binary-right-foldable<T, I> F> constexpr auto ranges::fold_right(I first, S last, T init, F f); template<bidirectional_range R, class T = range_value_t<R>, indirectly-binary-right-foldable<T, iterator_t<R>> F> constexpr auto ranges::fold_right(R&& r, T init, F f);
Effects: Equivalent to: using U = decay_t<invoke_result_t<F&, iter_reference_t<I>, T>>; if (first == last) return U(std::move(init)); I tail = ranges::next(first, last); U accum = invoke(f, *--tail, std::move(init)); while (first != tail) accum = invoke(f, *--tail, std::move(accum)); return accum;
template<bidirectional_iterator I, sentinel_for<I> S, indirectly-binary-right-foldable<iter_value_t<I>, I> F> requires constructible_from<iter_value_t<I>, iter_reference_t<I>> constexpr auto ranges::fold_right_last(I first, S last, F f); template<bidirectional_range R, indirectly-binary-right-foldable<range_value_t<R>, iterator_t<R>> F> requires constructible_from<range_value_t<R>, range_reference_t<R>> constexpr auto ranges::fold_right_last(R&& r, F f);
Let U be decltype(ranges​::​fold_right(first, last, iter_value_t<I>(*first), f)).
Effects: Equivalent to: if (first == last) return optional<U>(); I tail = ranges::prev(ranges::next(first, std::move(last))); return optional<U>(in_place, ranges::fold_right(std::move(first), tail, iter_value_t<I>(*tail), std::move(f)));
template<input_iterator I, sentinel_for<I> S, class T = iter_value_t<I>, indirectly-binary-left-foldable<T, I> F> constexpr see below ranges::fold_left_with_iter(I first, S last, T init, F f); template<input_range R, class T = range_value_t<R>, indirectly-binary-left-foldable<T, iterator_t<R>> F> constexpr see below ranges::fold_left_with_iter(R&& r, T init, F f);
Let U be decay_t<invoke_result_t<F&, T, iter_reference_t<I>>>.
Effects: Equivalent to: if (first == last) return {std::move(first), U(std::move(init))}; U accum = invoke(f, std::move(init), *first); for (++first; first != last; ++first) accum = invoke(f, std::move(accum), *first); return {std::move(first), std::move(accum)};
Remarks: The return type is fold_left_with_iter_result<I, U> for the first overload and fold_left_with_iter_result<borrowed_iterator_t<R>, U> for the second overload.
template<input_iterator I, sentinel_for<I> S, indirectly-binary-left-foldable<iter_value_t<I>, I> F> requires constructible_from<iter_value_t<I>, iter_reference_t<I>> constexpr see below ranges::fold_left_first_with_iter(I first, S last, F f); template<input_range R, indirectly-binary-left-foldable<range_value_t<R>, iterator_t<R>> F> requires constructible_from<range_value_t<R>, range_reference_t<R>> constexpr see below ranges::fold_left_first_with_iter(R&& r, F f);
Let U be decltype(ranges::fold_left(std::move(first), last, iter_value_t<I>(*first), f))
Effects: Equivalent to: if (first == last) return {std::move(first), optional<U>()}; optional<U> init(in_place, *first); for (++first; first != last; ++first) *init = invoke(f, std::move(*init), *first); return {std::move(first), std::move(init)};
Remarks: The return type is fold_left_first_with_iter_result<I, optional<U>> for the first overload and fold_left_first_with_iter_result<borrowed_iterator_t<R>, optional<U>> for the second overload.