The expression ranges::iter_move(E) for a subexpression E is
expression-equivalent to:

- iter_move(E), if E has class or enumeration type and iter_move(E) is a well-formed expression when treated as an unevaluated operand, where the meaning of iter_move is established as-if by performing argument-dependent lookup only ([basic.lookup.argdep]).

The name ranges::iter_swap denotes
a customization point object ([customization.point.object])
that exchanges the values ([concept.swappable]) denoted by its
arguments.

```
template<class X, class Y>
constexpr iter_value_t<X>
```*iter-exchange-move*(X&& x, Y&& y)
noexcept(noexcept(iter_value_t<X>(iter_move(x))) &&
noexcept(*x = iter_move(y)));

The expression ranges::iter_swap(E1, E2) for subexpressions
E1 and E2 is expression-equivalent to:

- (void)iter_swap(E1, E2), if either E1 or E2 has class or enumeration type and iter_swap(E1, E2) is a well-formed expression with overload resolution performed in a context that includes the declaration template<class I1, class I2> void iter_swap(I1, I2) = delete; and does not include a declaration of ranges::iter_swap.If the function selected by overload resolution does not exchange the values denoted by E1 and E2, the program is ill-formed, no diagnostic required.[
*Note 1*:This precludes calling unconstrained std::iter_swap.When the deleted overload is viable, program-defined overloads need to be more specialized ([temp.func.order]) to be selected.—*end note*] - Otherwise, if the types of E1 and E2 each model indirectly_readable, and if the reference types of E1 and E2 model swappable_with ([concept.swappable]), then ranges::swap(*E1, *E2).
- Otherwise, if the types T1 and T2 of E1 and E2 model indirectly_movable_storable<T1, T2> and indirectly_movable_storable<T2, T1>, then (void)(*E1 =
*iter-exchange-move*(E2, E1)), except that E1 is evaluated only once.