# 28 Numerics library [numerics]

## 28.9 Basic linear algebra algorithms [linalg]

### 28.9.9 Conjugated in-place transformation [linalg.conj]

#### 28.9.9.3 Function template conjugated[linalg.conj.conjugated]

``` template<class ElementType, class Extents, class Layout, class Accessor> constexpr auto conjugated(mdspan<ElementType, Extents, Layout, Accessor> a); ```
Let A be remove_cvref_t<decltype(a.accessor().nested_accessor())> if Accessor is a specialization of conjugated_accessor, and otherwise conjugated_accessor<Accessor>.
Returns:
• If Accessor is a specialization of conjugated_accessor, mdspan<typename A::element_type, Extents, Layout, A>(a.data_handle(), a.mapping(), a.accessor().nested_accessor())
• otherwise, mdspan<typename A::element_type, Extents, Layout, A>(a.data_handle(), a.mapping(), conjugated_accessor(a.accessor()))
[Example 1: void test_conjugated_complex(mdspan<complex<double>, extents<int, 10>> a) { auto a_conj = conjugated(a); for (int i = 0; i < a.extent(0); ++i) { assert(a_conj[i] == conj(a[i]); } auto a_conj_conj = conjugated(a_conj); for (int i = 0; i < a.extent(0); ++i) { assert(a_conj_conj[i] == a[i]); } } void test_conjugated_real(mdspan<double, extents<int, 10>> a) { auto a_conj = conjugated(a); for (int i = 0; i < a.extent(0); ++i) { assert(a_conj[i] == a[i]); } auto a_conj_conj = conjugated(a_conj); for (int i = 0; i < a.extent(0); ++i) { assert(a_conj_conj[i] == a[i]); } } â€” end example]