26 Ranges library [ranges]

26.7 Range adaptors [range.adaptors]

26.7.10 Take view [range.take] Overview [range.take.overview]

take_view produces a view of the first N elements from another view, or all the elements if the adapted view contains fewer than N.
The name views​::​take denotes a range adaptor object ([range.adaptor.object]).
Let E and F be expressions, let T be remove_cvref_t<decltype((E))>, and let D be range_difference_t<decltype((E))>.
If decltype((F)) does not model convertible_to<D>, views​::​take(E, F) is ill-formed.
Otherwise, the expression views​::​take(E, F) is expression-equivalent to:
  • If T is a specialization of empty_view ([range.empty.view]), then ((void)F, decay-copy(E)), except that the evaluations of E and F are indeterminately sequenced.
  • Otherwise, if T models random_access_range and sized_range and is a specialization of span ([views.span]), basic_string_view ([string.view]), or subrange ([range.subrange]), then U(ranges​::​begin(E), ranges​::​begin(E) + std​::​min<D>(ranges​::​distance(E), F)), except that E is evaluated only once, where U is a type determined as follows:
    • if T is a specialization of span, then U is span<typename T​::​element_type>;
    • otherwise, if T is a specialization of basic_string_view, then U is T;
    • otherwise, T is a specialization of subrange, and U is subrange<iterator_t<T>>;
  • otherwise, if T is a specialization of iota_view ([range.iota.view]) that models random_access_range and sized_range, then iota_view(*ranges​::​begin(E), *(ranges​::​begin(E) + std​::​
    min<D>(ranges​::​distance(E), F)))
    , except that E is evaluated only once.
  • Otherwise, if T is a specialization of repeat_view ([range.repeat.view]):
    • if T models sized_range, then views::repeat(*E.value_, std::min<D>(ranges::distance(E), F)) except that E is evaluated only once;
    • otherwise, views​::​repeat(*E.value_, static_cast<D>(F)).
  • Otherwise, take_view(E, F).
[Example 1: vector<int> is{0,1,2,3,4,5,6,7,8,9}; for (int i : is | views::take(5)) cout << i << ' '; // prints 0 1 2 3 4 — end example]