29 Numerics library [numerics]

29.9 Basic linear algebra algorithms [linalg]

29.9.2 Header <linalg> synopsis [linalg.syn]

namespace std::linalg { // [linalg.tags.order], storage order tags struct column_major_t; inline constexpr column_major_t column_major; struct row_major_t; inline constexpr row_major_t row_major; // [linalg.tags.triangle], triangle tags struct upper_triangle_t; inline constexpr upper_triangle_t upper_triangle; struct lower_triangle_t; inline constexpr lower_triangle_t lower_triangle; // [linalg.tags.diagonal], diagonal tags struct implicit_unit_diagonal_t; inline constexpr implicit_unit_diagonal_t implicit_unit_diagonal; struct explicit_diagonal_t; inline constexpr explicit_diagonal_t explicit_diagonal; // [linalg.layout.packed], class template layout_blas_packed template<class Triangle, class StorageOrder> class layout_blas_packed; // [linalg.helpers], exposition-only helpers // [linalg.helpers.concepts], linear algebra argument concepts template<class T> constexpr bool is-mdspan = see below; // exposition only template<class T> concept in-vector = see below; // exposition only template<class T> concept out-vector = see below; // exposition only template<class T> concept inout-vector = see below; // exposition only template<class T> concept in-matrix = see below; // exposition only template<class T> concept out-matrix = see below; // exposition only template<class T> concept inout-matrix = see below; // exposition only template<class T> concept possibly-packed-inout-matrix = see below; // exposition only template<class T> concept in-object = see below; // exposition only template<class T> concept out-object = see below; // exposition only template<class T> concept inout-object = see below; // exposition only // [linalg.scaled], scaled in-place transformation // [linalg.scaled.scaledaccessor], class template scaled_accessor template<class ScalingFactor, class NestedAccessor> class scaled_accessor; // [linalg.scaled.scaled], function template scaled template<class ScalingFactor, class ElementType, class Extents, class Layout, class Accessor> constexpr auto scaled(ScalingFactor alpha, mdspan<ElementType, Extents, Layout, Accessor> x); // [linalg.conj], conjugated in-place transformation // [linalg.conj.conjugatedaccessor], class template conjugated_accessor template<class NestedAccessor> class conjugated_accessor; // [linalg.conj.conjugated], function template conjugated template<class ElementType, class Extents, class Layout, class Accessor> constexpr auto conjugated(mdspan<ElementType, Extents, Layout, Accessor> a); // [linalg.transp], transpose in-place transformation // [linalg.transp.layout.transpose], class template layout_transpose template<class Layout> class layout_transpose; // [linalg.transp.transposed], function template transposed template<class ElementType, class Extents, class Layout, class Accessor> constexpr auto transposed(mdspan<ElementType, Extents, Layout, Accessor> a); // [linalg.conjtransposed], conjugated transpose in-place transformation template<class ElementType, class Extents, class Layout, class Accessor> constexpr auto conjugate_transposed(mdspan<ElementType, Extents, Layout, Accessor> a); // [linalg.algs.blas1], BLAS 1 algorithms // [linalg.algs.blas1.givens], Givens rotations // [linalg.algs.blas1.givens.lartg], compute Givens rotation template<class Real> struct setup_givens_rotation_result { Real c; Real s; Real r; }; template<class Real> struct setup_givens_rotation_result<complex<Real>> { Real c; complex<Real> s; complex<Real> r; }; template<class Real> setup_givens_rotation_result<Real> setup_givens_rotation(Real a, Real b) noexcept; template<class Real> setup_givens_rotation_result<complex<Real>> setup_givens_rotation(complex<Real> a, complex<Real> b) noexcept; // [linalg.algs.blas1.givens.rot], apply computed Givens rotation template<inout-vector InOutVec1, inout-vector InOutVec2, class Real> void apply_givens_rotation(InOutVec1 x, InOutVec2 y, Real c, Real s); template<class ExecutionPolicy, inout-vector InOutVec1, inout-vector InOutVec2, class Real> void apply_givens_rotation(ExecutionPolicy&& exec, InOutVec1 x, InOutVec2 y, Real c, Real s); template<inout-vector InOutVec1, inout-vector InOutVec2, class Real> void apply_givens_rotation(InOutVec1 x, InOutVec2 y, Real c, complex<Real> s); template<class ExecutionPolicy, inout-vector InOutVec1, inout-vector InOutVec2, class Real> void apply_givens_rotation(ExecutionPolicy&& exec, InOutVec1 x, InOutVec2 y, Real c, complex<Real> s); // [linalg.algs.blas1.swap], swap elements template<inout-object InOutObj1, inout-object InOutObj2> void swap_elements(InOutObj1 x, InOutObj2 y); template<class ExecutionPolicy, inout-object InOutObj1, inout-object InOutObj2> void swap_elements(ExecutionPolicy&& exec, InOutObj1 x, InOutObj2 y); // [linalg.algs.blas1.scal], multiply elements by scalar template<class Scalar, inout-object InOutObj> void scale(Scalar alpha, InOutObj x); template<class ExecutionPolicy, class Scalar, inout-object InOutObj> void scale(ExecutionPolicy&& exec, Scalar alpha, InOutObj x); // [linalg.algs.blas1.copy], copy elements template<in-object InObj, out-object OutObj> void copy(InObj x, OutObj y); template<class ExecutionPolicy, in-object InObj, out-object OutObj> void copy(ExecutionPolicy&& exec, InObj x, OutObj y); // [linalg.algs.blas1.add], add elementwise template<in-object InObj1, in-object InObj2, out-object OutObj> void add(InObj1 x, InObj2 y, OutObj z); template<class ExecutionPolicy, in-object InObj1, in-object InObj2, out-object OutObj> void add(ExecutionPolicy&& exec, InObj1 x, InObj2 y, OutObj z); // [linalg.algs.blas1.dot], dot product of two vectors template<in-vector InVec1, in-vector InVec2, class Scalar> Scalar dot(InVec1 v1, InVec2 v2, Scalar init); template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2, class Scalar> Scalar dot(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2, Scalar init); template<in-vector InVec1, in-vector InVec2> auto dot(InVec1 v1, InVec2 v2); template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2> auto dot(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2); template<in-vector InVec1, in-vector InVec2, class Scalar> Scalar dotc(InVec1 v1, InVec2 v2, Scalar init); template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2, class Scalar> Scalar dotc(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2, Scalar init); template<in-vector InVec1, in-vector InVec2> auto dotc(InVec1 v1, InVec2 v2); template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2> auto dotc(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2); // [linalg.algs.blas1.ssq], scaled sum of squares of a vector's elements template<class Scalar> struct sum_of_squares_result { Scalar scaling_factor; Scalar scaled_sum_of_squares; }; template<in-vector InVec, class Scalar> sum_of_squares_result<Scalar> vector_sum_of_squares(InVec v, sum_of_squares_result<Scalar> init); template<class ExecutionPolicy, in-vector InVec, class Scalar> sum_of_squares_result<Scalar> vector_sum_of_squares(ExecutionPolicy&& exec, InVec v, sum_of_squares_result<Scalar> init); // [linalg.algs.blas1.nrm2], Euclidean norm of a vector template<in-vector InVec, class Scalar> Scalar vector_two_norm(InVec v, Scalar init); template<class ExecutionPolicy, in-vector InVec, class Scalar> Scalar vector_two_norm(ExecutionPolicy&& exec, InVec v, Scalar init); template<in-vector InVec> auto vector_two_norm(InVec v); template<class ExecutionPolicy, in-vector InVec> auto vector_two_norm(ExecutionPolicy&& exec, InVec v); // [linalg.algs.blas1.asum], sum of absolute values of vector elements template<in-vector InVec, class Scalar> Scalar vector_abs_sum(InVec v, Scalar init); template<class ExecutionPolicy, in-vector InVec, class Scalar> Scalar vector_abs_sum(ExecutionPolicy&& exec, InVec v, Scalar init); template<in-vector InVec> auto vector_abs_sum(InVec v); template<class ExecutionPolicy, in-vector InVec> auto vector_abs_sum(ExecutionPolicy&& exec, InVec v); // [linalg.algs.blas1.iamax], index of maximum absolute value of vector elements template<in-vector InVec> typename InVec::extents_type vector_idx_abs_max(InVec v); template<class ExecutionPolicy, in-vector InVec> typename InVec::extents_type vector_idx_abs_max(ExecutionPolicy&& exec, InVec v); // [linalg.algs.blas1.matfrobnorm], Frobenius norm of a matrix template<in-matrix InMat, class Scalar> Scalar matrix_frob_norm(InMat A, Scalar init); template<class ExecutionPolicy, in-matrix InMat, class Scalar> Scalar matrix_frob_norm(ExecutionPolicy&& exec, InMat A, Scalar init); template<in-matrix InMat> auto matrix_frob_norm(InMat A); template<class ExecutionPolicy, in-matrix InMat> auto matrix_frob_norm(ExecutionPolicy&& exec, InMat A); // [linalg.algs.blas1.matonenorm], one norm of a matrix template<in-matrix InMat, class Scalar> Scalar matrix_one_norm(InMat A, Scalar init); template<class ExecutionPolicy, in-matrix InMat, class Scalar> Scalar matrix_one_norm(ExecutionPolicy&& exec, InMat A, Scalar init); template<in-matrix InMat> auto matrix_one_norm(InMat A); template<class ExecutionPolicy, in-matrix InMat> auto matrix_one_norm(ExecutionPolicy&& exec, InMat A); // [linalg.algs.blas1.matinfnorm], infinity norm of a matrix template<in-matrix InMat, class Scalar> Scalar matrix_inf_norm(InMat A, Scalar init); template<class ExecutionPolicy, in-matrix InMat, class Scalar> Scalar matrix_inf_norm(ExecutionPolicy&& exec, InMat A, Scalar init); template<in-matrix InMat> auto matrix_inf_norm(InMat A); template<class ExecutionPolicy, in-matrix InMat> auto matrix_inf_norm(ExecutionPolicy&& exec, InMat A); // [linalg.algs.blas2], BLAS 2 algorithms // [linalg.algs.blas2.gemv], general matrix-vector product template<in-matrix InMat, in-vector InVec, out-vector OutVec> void matrix_vector_product(InMat A, InVec x, OutVec y); template<class ExecutionPolicy, in-matrix InMat, in-vector InVec, out-vector OutVec> void matrix_vector_product(ExecutionPolicy&& exec, InMat A, InVec x, OutVec y); template<in-matrix InMat, in-vector InVec1, in-vector InVec2, out-vector OutVec> void matrix_vector_product(InMat A, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, in-matrix InMat, in-vector InVec1, in-vector InVec2, out-vector OutVec> void matrix_vector_product(ExecutionPolicy&& exec, InMat A, InVec1 x, InVec2 y, OutVec z); // [linalg.algs.blas2.symv], symmetric matrix-vector product template<in-matrix InMat, class Triangle, in-vector InVec, out-vector OutVec> void symmetric_matrix_vector_product(InMat A, Triangle t, InVec x, OutVec y); template<class ExecutionPolicy, in-matrix InMat, class Triangle, in-vector InVec, out-vector OutVec> void symmetric_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec x, OutVec y); template<in-matrix InMat, class Triangle, in-vector InVec1, in-vector InVec2, out-vector OutVec> void symmetric_matrix_vector_product(InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, in-matrix InMat, class Triangle, in-vector InVec1, in-vector InVec2, out-vector OutVec> void symmetric_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); // [linalg.algs.blas2.hemv], Hermitian matrix-vector product template<in-matrix InMat, class Triangle, in-vector InVec, out-vector OutVec> void hermitian_matrix_vector_product(InMat A, Triangle t, InVec x, OutVec y); template<class ExecutionPolicy, in-matrix InMat, class Triangle, in-vector InVec, out-vector OutVec> void hermitian_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec x, OutVec y); template<in-matrix InMat, class Triangle, in-vector InVec1, in-vector InVec2, out-vector OutVec> void hermitian_matrix_vector_product(InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, in-matrix InMat, class Triangle, in-vector InVec1, in-vector InVec2, out-vector OutVec> void hermitian_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); // [linalg.algs.blas2.trmv], triangular matrix-vector product // Overwriting triangular matrix-vector product template<in-matrix InMat, class Triangle, class DiagonalStorage, in-vector InVec, out-vector OutVec> void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InVec x, OutVec y); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, in-vector InVec, out-vector OutVec> void triangular_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec x, OutVec y); // In-place triangular matrix-vector product template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-vector InOutVec> void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InOutVec y); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, inout-vector InOutVec> void triangular_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutVec y); // Updating triangular matrix-vector product template<in-matrix InMat, class Triangle, class DiagonalStorage, in-vector InVec1, in-vector InVec2, out-vector OutVec> void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, in-vector InVec1, in-vector InVec2, out-vector OutVec> void triangular_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec1 x, InVec2 y, OutVec z); // [linalg.algs.blas2.trsv], solve a triangular linear system // Solve a triangular linear system, not in place template<in-matrix InMat, class Triangle, class DiagonalStorage, in-vector InVec, out-vector OutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x, BinaryDivideOp divide); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, in-vector InVec, out-vector OutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x, BinaryDivideOp divide); template<in-matrix InMat, class Triangle, class DiagonalStorage, in-vector InVec, out-vector OutVec> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, in-vector InVec, out-vector OutVec> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x); // Solve a triangular linear system, in place template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-vector InOutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InOutVec b, BinaryDivideOp divide); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, inout-vector InOutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutVec b, BinaryDivideOp divide); template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-vector InOutVec> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InOutVec b); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, inout-vector InOutVec> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutVec b); // [linalg.algs.blas2.rank1], nonsymmetric rank-1 matrix update template<in-vector InVec1, in-vector InVec2, inout-matrix InOutMat> void matrix_rank_1_update(InVec1 x, InVec2 y, InOutMat A); template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2, inout-matrix InOutMat> void matrix_rank_1_update(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A); template<in-vector InVec1, in-vector InVec2, inout-matrix InOutMat> void matrix_rank_1_update_c(InVec1 x, InVec2 y, InOutMat A); template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2, inout-matrix InOutMat> void matrix_rank_1_update_c(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A); // [linalg.algs.blas2.symherrank1], symmetric or Hermitian rank-1 matrix update template<class Scalar, in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, class Scalar, in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec, Scalar alpha, InVec x, InOutMat A, Triangle t); template<in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t); template<class Scalar, in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, class Scalar, in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec, Scalar alpha, InVec x, InOutMat A, Triangle t); template<in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, in-vector InVec, possibly-packed-inout-matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t); // [linalg.algs.blas2.rank2], symmetric and Hermitian rank-2 matrix updates // symmetric rank-2 matrix update template<in-vector InVec1, in-vector InVec2, possibly-packed-inout-matrix InOutMat, class Triangle> void symmetric_matrix_rank_2_update(InVec1 x, InVec2 y, InOutMat A, Triangle t); template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2, possibly-packed-inout-matrix InOutMat, class Triangle> void symmetric_matrix_rank_2_update(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A, Triangle t); // Hermitian rank-2 matrix update template<in-vector InVec1, in-vector InVec2, possibly-packed-inout-matrix InOutMat, class Triangle> void hermitian_matrix_rank_2_update(InVec1 x, InVec2 y, InOutMat A, Triangle t); template<class ExecutionPolicy, in-vector InVec1, in-vector InVec2, possibly-packed-inout-matrix InOutMat, class Triangle> void hermitian_matrix_rank_2_update(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A, Triangle t); // [linalg.algs.blas3], BLAS 3 algorithms // [linalg.algs.blas3.gemm], general matrix-matrix product template<in-matrix InMat1, in-matrix InMat2, out-matrix OutMat> void matrix_product(InMat1 A, InMat2 B, OutMat C); template<class ExecutionPolicy, in-matrix InMat1, in-matrix InMat2, out-matrix OutMat> void matrix_product(ExecutionPolicy&& exec, InMat1 A, InMat2 B, OutMat C); template<in-matrix InMat1, in-matrix InMat2, in-matrix InMat3, out-matrix OutMat> void matrix_product(InMat1 A, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, in-matrix InMat1, in-matrix InMat2, in-matrix InMat3, out-matrix OutMat> void matrix_product(ExecutionPolicy&& exec, InMat1 A, InMat2 B, InMat3 E, OutMat C); // [linalg.algs.blas3.xxmm], symmetric, Hermitian, and triangular matrix-matrix product template<in-matrix InMat1, class Triangle, in-matrix InMat2, out-matrix OutMat> void symmetric_matrix_product(InMat1 A, Triangle t, InMat2 B, OutMat C); template<class ExecutionPolicy, in-matrix InMat1, class Triangle, in-matrix InMat2, out-matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, OutMat C); template<in-matrix InMat1, class Triangle, in-matrix InMat2, out-matrix OutMat> void hermitian_matrix_product(InMat1 A, Triangle t, InMat2 B, OutMat C); template<class ExecutionPolicy, in-matrix InMat1, class Triangle, in-matrix InMat2, out-matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, OutMat C); template<in-matrix InMat1, class Triangle, class DiagonalStorage, in-matrix InMat2, out-matrix OutMat> void triangular_matrix_product(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat C); template<class ExecutionPolicy, in-matrix InMat1, class Triangle, class DiagonalStorage, in-matrix InMat2, out-matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat C); template<in-matrix InMat1, in-matrix InMat2, class Triangle, out-matrix OutMat> void symmetric_matrix_product(InMat1 A, InMat2 B, Triangle t, OutMat C); template<class ExecutionPolicy, in-matrix InMat1, in-matrix InMat2, class Triangle, out-matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 A, InMat2 B, Triangle t, OutMat C); template<in-matrix InMat1, in-matrix InMat2, class Triangle, out-matrix OutMat> void hermitian_matrix_product(InMat1 A, InMat2 B, Triangle t, OutMat C); template<class ExecutionPolicy, in-matrix InMat1, in-matrix InMat2, class Triangle, out-matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 A, InMat2 B, Triangle t, OutMat C); template<in-matrix InMat1, in-matrix InMat2, class Triangle, class DiagonalStorage, out-matrix OutMat> void triangular_matrix_product(InMat1 A, InMat2 B, Triangle t, DiagonalStorage d, OutMat C); template<class ExecutionPolicy, in-matrix InMat1, in-matrix InMat2, class Triangle, class DiagonalStorage, out-matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 A, InMat2 B, Triangle t, DiagonalStorage d, OutMat C); template<in-matrix InMat1, class Triangle, in-matrix InMat2, in-matrix InMat3, out-matrix OutMat> void symmetric_matrix_product(InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, in-matrix InMat1, class Triangle, in-matrix InMat2, in-matrix InMat3, out-matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); template<in-matrix InMat1, class Triangle, in-matrix InMat2, in-matrix InMat3, out-matrix OutMat> void hermitian_matrix_product(InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, in-matrix InMat1, class Triangle, in-matrix InMat2, in-matrix InMat3, out-matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); template<in-matrix InMat1, class Triangle, class DiagonalStorage, in-matrix InMat2, in-matrix InMat3, out-matrix OutMat> void triangular_matrix_product(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, in-matrix InMat1, class Triangle, class DiagonalStorage, in-matrix InMat2, in-matrix InMat3, out-matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, InMat3 E, OutMat C); template<in-matrix InMat1, in-matrix InMat2, class Triangle, in-matrix InMat3, out-matrix OutMat> void symmetric_matrix_product(InMat1 A, InMat2 B, Triangle t, InMat3 E, OutMat C); template<class ExecutionPolicy, in-matrix InMat1, in-matrix InMat2, class Triangle, in-matrix InMat3, out-matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 A, InMat2 B, Triangle t, InMat3 E, OutMat C); template<in-matrix InMat1, in-matrix InMat2, class Triangle, in-matrix InMat3, out-matrix OutMat> void hermitian_matrix_product(InMat1 A, InMat2 B, Triangle t, InMat3 E, OutMat C); template<class ExecutionPolicy, in-matrix InMat1, in-matrix InMat2, class Triangle, in-matrix InMat3, out-matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 A, InMat2 B, Triangle t, InMat3 E, OutMat C); template<in-matrix InMat1, in-matrix InMat2, class Triangle, class DiagonalStorage, in-matrix InMat3, out-matrix OutMat> void triangular_matrix_product(InMat1 A, InMat2 B, Triangle t, DiagonalStorage d, InMat3 E, OutMat C); template<class ExecutionPolicy, in-matrix InMat1, in-matrix InMat2, class Triangle, class DiagonalStorage, in-matrix InMat3, out-matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 A, InMat2 B, Triangle t, DiagonalStorage d, InMat3 E, OutMat C); // [linalg.algs.blas3.trmm], in-place triangular matrix-matrix product template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat> void triangular_matrix_left_product(InMat A, Triangle t, DiagonalStorage d, InOutMat C); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat> void triangular_matrix_left_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutMat C); template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat> void triangular_matrix_right_product(InMat A, Triangle t, DiagonalStorage d, InOutMat C); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat> void triangular_matrix_right_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutMat C); // [linalg.algs.blas3.rankk], rank-k update of a symmetric or Hermitian matrix // rank-k symmetric matrix update template<class Scalar, in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(Scalar alpha, InMat A, InOutMat C, Triangle t); template<class ExecutionPolicy, class Scalar, in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(ExecutionPolicy&& exec, Scalar alpha, InMat A, InOutMat C, Triangle t); template<in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(InMat A, InOutMat C, Triangle t); template<class ExecutionPolicy, in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(ExecutionPolicy&& exec, InMat A, InOutMat C, Triangle t); // rank-k Hermitian matrix update template<class Scalar, in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle> void hermitian_matrix_rank_k_update(Scalar alpha, InMat A, InOutMat C, Triangle t); template<class ExecutionPolicy, class Scalar, in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle> void hermitian_matrix_rank_k_update(ExecutionPolicy&& exec, Scalar alpha, InMat A, InOutMat C, Triangle t); template<in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle> void hermitian_matrix_rank_k_update(InMat A, InOutMat C, Triangle t); template<class ExecutionPolicy, in-matrix InMat, possibly-packed-inout-matrix InOutMat, class Triangle> void hermitian_matrix_rank_k_update(ExecutionPolicy&& exec, InMat A, InOutMat C, Triangle t); // [linalg.algs.blas3.rank2k], rank-2k update of a symmetric or Hermitian matrix // rank-2k symmetric matrix update template<in-matrix InMat1, in-matrix InMat2, possibly-packed-inout-matrix InOutMat, class Triangle> void symmetric_matrix_rank_2k_update(InMat1 A, InMat2 B, InOutMat C, Triangle t); template<class ExecutionPolicy, in-matrix InMat1, in-matrix InMat2, possibly-packed-inout-matrix InOutMat, class Triangle> void symmetric_matrix_rank_2k_update(ExecutionPolicy&& exec, InMat1 A, InMat2 B, InOutMat C, Triangle t); // rank-2k Hermitian matrix update template<in-matrix InMat1, in-matrix InMat2, possibly-packed-inout-matrix InOutMat, class Triangle> void hermitian_matrix_rank_2k_update(InMat1 A, InMat2 B, InOutMat C, Triangle t); template<class ExecutionPolicy, in-matrix InMat1, in-matrix InMat2, possibly-packed-inout-matrix InOutMat, class Triangle> void hermitian_matrix_rank_2k_update(ExecutionPolicy&& exec, InMat1 A, InMat2 B, InOutMat C, Triangle t); // [linalg.algs.blas3.trsm], solve multiple triangular linear systems // solve multiple triangular systems on the left, not-in-place template<in-matrix InMat1, class Triangle, class DiagonalStorage, in-matrix InMat2, out-matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<class ExecutionPolicy, in-matrix InMat1, class Triangle, class DiagonalStorage, in-matrix InMat2, out-matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<in-matrix InMat1, class Triangle, class DiagonalStorage, in-matrix InMat2, out-matrix OutMat> void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); template<class ExecutionPolicy, in-matrix InMat1, class Triangle, class DiagonalStorage, in-matrix InMat2, out-matrix OutMat> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); // solve multiple triangular systems on the right, not-in-place template<in-matrix InMat1, class Triangle, class DiagonalStorage, in-matrix InMat2, out-matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<class ExecutionPolicy, in-matrix InMat1, class Triangle, class DiagonalStorage, in-matrix InMat2, out-matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<in-matrix InMat1, class Triangle, class DiagonalStorage, in-matrix InMat2, out-matrix OutMat> void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); template<class ExecutionPolicy, in-matrix InMat1, class Triangle, class DiagonalStorage, in-matrix InMat2, out-matrix OutMat> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); // solve multiple triangular systems on the left, in-place template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(InMat A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide); template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat> void triangular_matrix_matrix_left_solve(InMat A, Triangle t, DiagonalStorage d, InOutMat B); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutMat B); // solve multiple triangular systems on the right, in-place template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(InMat A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide); template<in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat> void triangular_matrix_matrix_right_solve(InMat A, Triangle t, DiagonalStorage d, InOutMat B); template<class ExecutionPolicy, in-matrix InMat, class Triangle, class DiagonalStorage, inout-matrix InOutMat> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutMat B); }